Mechanics M3 Mark scheme

Question	Scheme	Marks
1	(30° or θ for the first 3 lines)	
	$R\sin 30^\circ = mg$	M1 A1
	$R\cos 30^\circ = m(r\cos 30^\circ)\omega^2$	M1 A1 A1
	$\omega^2 = \frac{R}{mr} = \frac{g}{r\sin 30}$	DM1
	$\omega = \sqrt{\frac{2g}{r}}$	A1
	Time = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{r}{2g}} = \pi \sqrt{\frac{2r}{g}} *$	A1 cso
		(8)
	Alternative:	
	Resolve perpendicular to the reaction:	
	$mg\cos 30 = m \times rad \times \omega^2 \cos 60$	M2 A1 (LHS) A1 (RHS)
	$=mr\cos 30\omega^2\cos 60$	A1
	Obtain ω	M1 A1
	Correct time	A1 (8)
		(8) (8) (8) (8)

Notes:

- **M1:** Resolving vertically 30° or θ
- A1: Correct equation 30° or θ
- M1: Attempting an equation of motion along the radius, acceleration in either form 30° or θ Allow with *r* for radius.
- **A1:** LHS correct 30° or θ
- A1: RHS correct, 30° or θ but not *r* for radius.
- **DM1:** Obtaining an expression for ω^2 or for v^2 and the length of the path 30° or θ Dependent on both previous M marks.
- A1: Correct expression for ω Must have the numerical value for the trig function now.
- A1cso: Deducing the GIVEN answer.

Questi	on Scheme	Marks
2(a)	$F = \frac{K}{x^2}$	
	$x = R \Longrightarrow F = mg$ $\therefore mg = \frac{K}{R^2}$	M1
	$K = mgR^2 *$	A1
		(2)
(b)	$\frac{mgR^2}{x^2} = -mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1
	$g\int \frac{R^2}{x^2} dx = -\int v dv$	
	$-g\frac{R^2}{x} = -\frac{1}{2}v^2 \ (+c)$	dM1 A1ft
	$x = 3R, v = V \Longrightarrow -g \frac{R^2}{3R} = -\frac{1}{2}V^2 + c$	M1
	$c = -\frac{Rg}{3} + \frac{1}{2}V^2$	A1
	$x = R \Longrightarrow \frac{1}{2}v^2 = -\frac{Rg}{3} + \frac{1}{2}V^2 + g\frac{R^2}{R}$	M1
	$v^2 = V^2 + \frac{4Rg}{3}$	
	$v = \sqrt{V^2 + \frac{4Rg}{3}}$	A1 cso
		(7)
	(9	marks)
Notes:		
(a) M1:	Setting $F = mg$ and $x = R$	
	Deducing the GIVEN answer	
(b)		
M1:	Attempting an equation of motion with acceleration in the form $v \frac{dv}{dx}$. The minus sign	may
	be missing.	
	Attempting the integration.	
	Correct integration, follow through on a missing minus sign from line 1, constant of integration may be missing.	
	Substituting $x = 3R, v = V$ to obtain an equation for <i>c</i>	
	Correct expression for <i>c</i> .	
	Substituting $x = R$ and their expression for <i>c</i> .	
A1:	Correct expression for <i>v</i> , any equivalent form.	

PMT

Questio	n Scheme	Marks
3 (a)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -2\left(t+4\right)^{-\frac{1}{2}}$	M1
	$\frac{dt}{v = -\int 2(t+4)^{-\frac{1}{2}} dt}$	
		1) (1
	$v = -4(t+4)^{\frac{1}{2}} (+c)$	dM1 A1
	$t = 0, v = 8 \Longrightarrow c = 16$	M1
	$v = 16 - 4(t+4)^{\frac{1}{2}}$ (m s ⁻¹) *	A1
		(5)
(b)	$v = 0$ $16 = 4(t+4)^{\frac{1}{2}}$	M1
	16 = t + 4 $t = 12$	A1
	$x = 4 \int \left(4 - (t+4)^{\frac{1}{2}} \right) dt$	
	$x = 4\left(4t - \frac{2}{3}\left(t + 4\right)^{\frac{3}{2}}\right) \ (+d)$	M1 A1
	$t = 0, x = 0$ $d = 4 \times \frac{2}{3} \times 4^{\frac{3}{2}} = \frac{64}{3}$ oe	A1
	$t = 12$ $x = 4\left(4 \times 12 - \frac{2}{3} \times 16^{\frac{3}{2}}\right) + \frac{64}{3} = 42\frac{2}{3}$ (m) oe eg 43 or better	dM1 A1
		(7)
	(12	marks)
Notes:		
(a)	du	
M1: A	ttempting an expression for the acceleration in the form $\frac{dv}{dt}$; minus may be omitted.	
	ttempting the integration	
	Correct integration, constant of integration may be omitted (no ft)	
	Using the initial conditions to obtain a value for the constant of integration so. Substitute the value of <i>c</i> and obtain the final GIVEN answer	
(b)		
M1: S	etting the given expression for v equal to 0	
	olving to get $t = 12$	
M1: S	etting $v = \frac{dx}{dt}$ and attempting the integration wrt <i>t</i> . At least one term must clearly be	
	ntegrated.	
A1: (correct integration, constant may be omitted.	

PMT

Question 3 notes *continued*

M1:	Substituting $t = 0$, $x = 0$ and obtaining the correct value of d. Any equivalent number, inc
	decimals.

- **dM1:** Substituting their value for *t* and obtaining a value for the required distance. Dependent on the second M mark.
- A1: Correct final answer, any equivalent form.

Question	Scheme	Marks
4(a)	Energy to top: $\frac{1}{2} \times 3m \times u^2 - \frac{1}{2} \times 3mv^2 = 3mga$	M1 A1
	NL2 at top: $T + 3mg = 3m\frac{v^2}{a}$	M1 A1
	u u	
	$T = 3m\frac{u^2}{a} - 6mg - 3mg$	dM1
	$T \ge 0 \implies \frac{u^2}{a} \ge 3g$	M1
	$u^2 \ge 3ag$	A1 cso
		(7)
(b)	Tension at bottom:	
	$\frac{1}{2} \times 3m \times V^2 - \frac{1}{2} \times 3mu^2 = 3mga$	M1
	$T_{\max} - 3mg = 3m\frac{V^2}{a}$	M1
	$T_{\max} = 3mg + 6mg + 3m\frac{u^2}{a}$	A1
	$T_{\min} = 3m\frac{u^2}{a} - 9mg$	
	$9mg + 3m\frac{u^2}{a} = 3\left(3m\frac{u^2}{a} - 9mg\right)$	dM1
	$u^2 = 6ag$ *	Al
		(5)
	(1	2 marks)
Notes:	(*	2 mar (k5)
	mpting an energy equation, can be to a general point for this mark. Mass can be use of $v^2 = u^2 + 2as$ scores M0	missing
	rect equation from A to the top.	
	mpting an equation of motion along the radius at the top, acceleration in either f	orm.
A1: Corr	rect equation, acceleration in form $\frac{v^2}{r}$	
	ninate v^2 to obtain an expression for <i>T</i> dependent on both previous M marks.	
	$T \ge 0$ at top to obtain an inequality connecting a, g and u	
A1: Re-a	urrange to obtain the GIVEN answer.	

427

Question 4 notes continued

(b)

- M1: Attempting an energy equation to the bottom, maybe from A or from the top.
- M1: Attempting an equation of motion along the radius at the bottom.
- A1: Correct expression for the max tension.
- **dM1:** Forming an equation connecting *their* tension at the top with *their* tension at the bottom. If the 3 is multiplying the wrong tension this mark can still be gained. Dependent on both previous M marks.
- A1: cso. Obtaining the GIVEN answer.

Question	Scheme	Marks
5(a)	$T = \frac{20e}{2} = \frac{15(1.8 - e)}{1.2}$	M1A1
	$10e \times 1.2 = 15(1.8 - e)$	A 1
	<i>e</i> = 1	A1 A1cso
	AO = 3 m *	
(b)	20(1 - n) - 15(0 + n)	(4) M1
(b)	$0.5\ddot{x} = \frac{20(1-x)}{2} - \frac{15(0.8+x)}{1.2}$	A1
		A1
	$\ddot{x} = -45x$ \therefore SHM	A1 cso
		(4)
(c)	String becomes slack when $x = (-)0.8$ (allow wo sign due to symmetry)	B1
	$v^2 = \omega^2 \left(a^2 - x^2 \right)$	
	$v^2 = 45(1-0.8^2)$ (=16.2)	M1
	$v = 4.024 \text{ m s}^{-1}$ (4.0 or better)	A1 ft A1 ft
		(4)
(d)	$\frac{1}{2} \times \frac{20y^2}{2} - \frac{1}{2} \times \frac{20 \times 1.8^2}{2} = \frac{1}{2} \times 0.5 \times 16.2 \text{ft on } v$	M1
	$\frac{1}{2} \times \frac{20y}{2} - \frac{1}{2} \times \frac{20 \times 1.8}{2} = \frac{1}{2} \times 0.5 \times 16.2 \text{ft on } v$	A1 A1 ft
	$20y^2 - 64.8 = 16.2$	
	$y^2 = 4.05$ $y = 2.012$	A1
	Distance $DB = 5 - 4.012 = 0.988m$ (accept 0.99 or better)	Alft
	Alternative	I
	0.5a = -10(1.8 + x)	
	$v \frac{\mathrm{d}v}{\mathrm{d}x} = -36 - 10x$	
	$\int v dv = -\int (36 + 10x) dx$	
	$\frac{v^2}{2} = -36x + 5x^2 + c$	M1
		A1 A1
	$x = 0, v = \frac{9\sqrt{5}}{5} \therefore c = 8.1$	
	Then $v = 0$ etc	M1
		(5)
		(17 marks)

Quest	ion 5 continued
Notes	
(a)	
M1:	Attempting to obtain and equate the tensions in the two parts of the string.
A1:	Correct equation, extension in AP or BP can be used or use OA as the unknown.
A1:	Obtaining the correct extension in either string (ext in $BP = 0.8$ m) or another useful distance.
A1:	cso. Obtaining the correct GIVEN answer.
(b)	
M1:	Forming an equation of motion at a general point. There must be a difference of tensions, both with the variable. May have m instead of 0.5 Accel can be a .
A1 A1	: Deduct 1 for each error, m or 0.5 allowed, acceleration to be \ddot{x} now.
A1:	cso Correct equation in the required form, with a concluding statement; m or 0.5 allowed.
Quest	ion 5 notes continued
(c)	
B1:	For $x = \pm 0.8$ Need not be shown explicitly.
M1:	Using $v^2 = \omega^2 (a^2 - x^2)$ with <i>their</i> (numerical) ω and their x
A1ft:	Equation with correct numbers ft their ω
A1ft:	Correct value for v 2sf or better or exact.
(d)	
M1:	Attempting an energy equation with 2 EPE terms and a KE term.
A1:	2 correct terms may have $(1.8+x)$ instead of y.
A1ft:	Completely correct equation, follow through their v from (c)
A1:	Correct value for distance travelled after <i>PB</i> became slack. $x = 0.21$
A1ft:	Complete to the distance <i>DB</i> . Follow through their distance travelled after <i>PB</i> became slack.

Question	Scheme	Marks
6(a)	$Vol = \pi \int_{0}^{2} (x^{2} + 3)^{2} dx$	M1
	$=\pi \int_0^2 \left(x^4 + 6x^2 + 9 \right) \mathrm{d}x$	
	$=\pi \left[\frac{1}{5}x^{5} + 2x^{3} + 9x\right]_{0}^{2}$	dM1 A1
	$=\frac{202}{5}\pi \mathrm{cm}^3 \mathbf{*}$	Al
		(4)
(b)	$\pi \int_0^2 x (x^2 + 3)^2 dx = \pi \int_0^2 (x^5 + 6x^3 + 9x) dx$	M1
	$=\pi \left[\frac{1}{6}x^{6} + \frac{3}{2}x^{4} + \frac{9}{2}x^{2}\right]_{0}^{2}$	A1
	$=\frac{158}{3}\pi$	A1
	(Or by chain rule or substitution)	M1
	$C \text{ of } m = \frac{158}{3} \times \frac{5}{202}, = 1.3036 = 1.30 \text{ cm}$	A1
		(5)
(c)	Mass ratio $2 \times \frac{202}{5}\pi$ $\frac{1}{3}\pi \times 7^2 \times 6$ $\left(\frac{404}{5} + 98\right)\pi$	B1
	Dist from V 6.7 4.5 \overline{x}	B1
	$\frac{404}{5} \times 6.7 + 98 \times 4.5 = \left(\frac{404}{5} + 98\right)\overline{x}$	M1 A1 ft
	$\overline{x} = \frac{\frac{404}{5} \times 6.7 + 98 \times 4.5}{\left(\frac{404}{5} + 98\right)} = 5.494 = 5.5 \text{ cm} \text{ Accept 5.49 or better}$	A1
		(5)
(d)	$\tan \theta = \frac{6 - \overline{x}}{7} = \frac{0.5058}{7}$	M1
	$\alpha = \tan^{-1}\left(\frac{6}{7}\right) - \tan^{-1}\left(\frac{0.5058}{7}\right) = 36.468^{\circ} = 36^{\circ}$ or better	M1 A1
		(3)
		(17 marks)
Notes:		
(a)		
M1: Usi	ing $\pi \int y^2 dx$ with the equation of the curve, no limits needed	

PMT

Questi	Question 6 notes continued	
dM1:	Integrating their expression for the volume.	
A1:	Correct integration inc limits now.	
A1:	Substituting the limits to obtain the GIVEN answer.	
(b)		
M1:	Using $(\pi)\int xy^2 dx$ with the equation of the curve, no limits needed, π can be omitted.	
A1:	Correct integration, including limits; no substitution needed for this mark.	
A1:	Correct substitution of limits.	
M1:	Use of $\frac{\pi \int xy^2 dx}{\pi \int y^2 dx}$ with their $\pi \int xy^2 dx$. π must be seen in both numerator and	
	denominator or in neither.	
A1:	cso. Correct answer. Must be 1.30	
(c)		
B1:	Correct mass ratio.	
B1:	Correct distances, from V or any other point, provided consistent.	
M1:	Attempting a moments equation.	
A1ft:	Correct equation, follow through their distances and mass ratio.	
A1:	Correct distance from V	
(d)		
M1:	Attempting the tan of an appropriate angle, numbers either way up.	
M1:	Attempting to obtain the required angle.	
A1:	Correct final answer 2sf or more.	