Mechanics M3 Mark scheme

Question	Scheme	Marks
1	(30° or θ for the first 3 lines)	
	$R \sin 30^{\circ}=m g$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$R \cos 30^{\circ}=m\left(r \cos 30^{\circ}\right) \omega^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$
	$\omega^{2}=\frac{R}{m r}=\frac{g}{r \sin 30}$	DM1
	$\omega=\sqrt{\frac{2 g}{r}}$	A1
	Time $=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{r}{2 g}}=\pi \sqrt{\frac{2 r}{g}} \quad *$	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
		(8)
	Alternative:	
	Resolve perpendicular to the reaction:	
	$m g \cos 30=m \times r a d \times \omega^{2} \cos 60$	$\begin{gathered} \text { M2 } \\ \text { A1 } \\ \text { (LHS) } \\ \text { A1 } \\ \text { (RHS) } \end{gathered}$
	$=m r \cos 30 \omega^{2} \cos 60$	A1
	Obtain ω	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	Correct time	A1
		(8)
(8 marks)		
Notes:		
M1: Resolving vertically 30° or θ A1: Correct equation 30° or θ M1: Attempting an equation of motion along the radius, acceleration in either form 30° or θ Allow with r for radius. A1: LHS correct 30° or θ A1: RHS correct, 30° or θ but not r for radius. DM1: Obtaining an expression for ω^{2} or for v^{2} and the length of the path 30° or θ Dependent on both previous M marks. A1: Correct expression for ω Must have the numerical value for the trig function now. A1cso: Deducing the GIVEN answer.		

2(a)	$F=\frac{K}{x^{2}}$	
	$x=R \Rightarrow F=m g \quad \therefore m g=\frac{K}{R^{2}}$	M1
	$K=m g R^{2}$ *	A1
		(2)
(b)	$\frac{m g R^{2}}{x^{2}}=-m v \frac{\mathrm{~d} v}{\mathrm{~d} x}$	M1
	$g \int \frac{R^{2}}{x^{2}} \mathrm{~d} x=-\int v \mathrm{~d} v$	
	$-g \frac{R^{2}}{x}=-\frac{1}{2} v^{2} \quad(+c)$	dM1 A1ft
	$x=3 R, v=V \Rightarrow-g \frac{R^{2}}{3 R}=-\frac{1}{2} V^{2}+c$	M1
	$c=-\frac{R g}{3}+\frac{1}{2} V^{2}$	A1
	$x=R \Rightarrow \frac{1}{2} v^{2}=-\frac{R g}{3}+\frac{1}{2} V^{2}+g \frac{R^{2}}{R}$	M1
	$v^{2}=V^{2}+\frac{4 R g}{3}$	
	$v=\sqrt{V^{2}+\frac{4 R g}{3}}$	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
		(7)
(9 marks)		

Notes:

(a)

M1: \quad Setting $F=m g$ and $x=R$
A1: Deducing the GIVEN answer
(b)

M1: Attempting an equation of motion with acceleration in the form $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$. The minus sign may be missing.
dM1: Attempting the integration.
A1ft: Correct integration, follow through on a missing minus sign from line 1 , constant of integration may be missing.
M1: Substituting $x=3 R, v=V$ to obtain an equation for c
A1: Correct expression for c.
M1: Substituting $x=R$ and their expression for c.
A1: Correct expression for v, any equivalent form.

3(a)	$\frac{\mathrm{d} v}{\mathrm{~d} t}=-2(t+4)^{-\frac{1}{2}}$	M1
	$v=-\int 2(t+4)^{-\frac{1}{2}} \mathrm{~d} t$	
	$v=-4(t+4)^{\frac{1}{2}}(+c)$	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$
	$t=0, v=8 \Rightarrow c=16$	M1
	$v=16-4(t+4)^{\frac{1}{2}}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) *$	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
		(5)
(b)	$v=0 \quad 16=4(t+4)^{\frac{1}{2}}$	M1
	$16=t+4 \quad t=12$	A1
	$x=4 \int\left(4-(t+4)^{\frac{1}{2}}\right) \mathrm{d} t$	
	$x=4\left(4 t-\frac{2}{3}(t+4)^{\frac{3}{2}}\right)(+d)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$t=0, x=0 \quad d=4 \times \frac{2}{3} \times 4^{\frac{3}{2}}=\frac{64}{3} \quad$ oe	A1
	$t=12 \quad x=4\left(4 \times 12-\frac{2}{3} \times 16^{\frac{3}{2}}\right)+\frac{64}{3}=42 \frac{2}{3}$ (m) \quad oe eg 43 or better	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$
		(7)
	(12 marks)	

Notes:

(a)

M1: Attempting an expression for the acceleration in the form $\frac{\mathrm{d} v}{\mathrm{~d} t}$; minus may be omitted.
DM1: Attempting the integration
A1: Correct integration, constant of integration may be omitted (no ft)
M1: Using the initial conditions to obtain a value for the constant of integration
A1: cso. Substitute the value of c and obtain the final GIVEN answer
(b)

M1: \quad Setting the given expression for v equal to 0
A1: \quad Solving to get $t=12$
M1: Setting $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ and attempting the integration wrt t. At least one term must clearly be integrated.
A1: Correct integration, constant may be omitted.

Question 3 notes continued

M1: Substituting $t=0, x=0$ and obtaining the correct value of d. Any equivalent number, inc decimals.
dM1: Substituting their value for t and obtaining a value for the required distance. Dependent on the second M mark.
A1: Correct final answer, any equivalent form.

Question 4 notes continued

(b)

M1: Attempting an energy equation to the bottom, maybe from A or from the top.
M1: Attempting an equation of motion along the radius at the bottom.
A1: Correct expression for the max tension.
dM1: Forming an equation connecting their tension at the top with their tension at the bottom. If the 3 is multiplying the wrong tension this mark can still be gained. Dependent on both previous M marks.
A1: cso. Obtaining the GIVEN answer.

Question	Scheme	Marks
5(a)	$T=\frac{20 e}{2}=\frac{15(1.8-e)}{1.2}$	M1A1
	$10 e \times 1.2=15(1.8-e)$	
	$e=1$	A1
	$A O=3 \mathrm{~m}$ *	A1cso
		(4)
(b)	$0.5 \ddot{x}=\frac{20(1-x)}{2}-\frac{15(0.8+x)}{1.2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
	$\ddot{x}=-45 x \quad \therefore \mathrm{SHM}$	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
		(4)
(c)	String becomes slack when $x=(-) 0.8$ (allow wo sign due to symmetry)	B1
	$v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$	
	$v^{2}=45\left(1-0.8^{2}\right) \quad(=16.2)$	$\begin{gathered} \text { M1 } \\ \text { A1 ft } \end{gathered}$
	$v=4.024 \ldots \mathrm{~m} \mathrm{~s}^{-1}$ (4.0 or better)	A1ft
		(4)
(d)	$\frac{1}{2} \times \frac{20 y^{2}}{2}-\frac{1}{2} \times \frac{20 \times 1.8^{2}}{2}=\frac{1}{2} \times 0.5 \times 16.2 \quad \mathrm{ft}$ on v	M1 A1 A1 ft
	$20 y^{2}-64.8=16.2$	
	$y^{2}=4.05 \quad y=2.012 \ldots$.	A1
	Distance $D B=\|5-4.012 \ldots\|=0.988 \ldots$ m (accept 0.99 or better)	A1ft
	Alternative	
	$0.5 \mathrm{a}=-10(1.8+x)$	
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-36-10 x$	
	$\int v \mathrm{~d} v=-\int(36+10 x) \mathrm{d} x$	
	$\frac{v^{2}}{2}=-36 x+5 x^{2}+c$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$x=0, v=\frac{9 \sqrt{5}}{5} \therefore c=8.1$	A1
	Then $v=0$ etc	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
		(5)
(17 marks)		

Question 5 continued

Notes:

(a)

M1: Attempting to obtain and equate the tensions in the two parts of the string.
A1: Correct equation, extension in $A P$ or $B P$ can be used or use $O A$ as the unknown.
A1: Obtaining the correct extension in either string (ext in $B P=0.8 \mathrm{~m}$) or another useful distance.
A1: cso. Obtaining the correct GIVEN answer.
(b)

M1: Forming an equation of motion at a general point. There must be a difference of tensions, both with the variable. May have m instead of 0.5 Accel can be a.
A1 A1: Deduct 1 for each error, m or 0.5 allowed, acceleration to be \ddot{x} now.
A1: cso Correct equation in the required form, with a concluding statement; m or 0.5 allowed.

Question 5 notes continued

(c)

B1: For $x= \pm 0.8$ Need not be shown explicitly.
M1: Using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with their (numerical) ω and their x
A1ft: Equation with correct numbers ft their ω
A1ft: Correct value for $v 2 \mathrm{sf}$ or better or exact.
(d)

M1: Attempting an energy equation with 2 EPE terms and a KE term.
A1: 2 correct terms may have $(1.8+x)$ instead of y.
A1ft: Completely correct equation, follow through their v from (c)
A1: \quad Correct value for distance travelled after $P B$ became slack. $x=0.21$
A1ft: Complete to the distance $D B$. Follow through their distance travelled after $P B$ became slack.

Question	Scheme	Marks
6(a)	$\mathrm{Vol}=\pi \int_{0}^{2}\left(x^{2}+3\right)^{2} \mathrm{~d} x$	M1
	$=\pi \int_{0}^{2}\left(x^{4}+6 x^{2}+9\right) \mathrm{d} x$	
	$=\pi\left[\frac{1}{5} x^{5}+2 x^{3}+9 x\right]_{0}^{2}$	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$
	$=\frac{202}{5} \pi \mathrm{~cm}^{3} *$	A1
		(4)
(b)	$\pi \int_{0}^{2} x\left(x^{2}+3\right)^{2} \mathrm{~d} x=\pi \int_{0}^{2}\left(x^{5}+6 x^{3}+9 x\right) \mathrm{d} x$	M1
	$=\pi\left[\frac{1}{6} x^{6}+\frac{3}{2} x^{4}+\frac{9}{2} x^{2}\right]_{0}^{2}$	A1
	$=\frac{158}{3} \pi$ (Or by chain rule or substitution)	A1
	C of $\mathrm{m}=\frac{158}{3} \times \frac{5}{202},=1.3036 \ldots=1.30 \mathrm{~cm}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
		(5)
(c)	Mass ratio $\quad 2 \times \frac{202}{5} \pi \quad \frac{1}{3} \pi \times 7^{2} \times 6 \quad\left(\frac{404}{5}+98\right) \pi$	B1
	$\begin{array}{llll}\text { Dist from } V & 6.7 & 4.5 & \bar{x}\end{array}$	B1
	$\frac{404}{5} \times 6.7+98 \times 4.5=\left(\frac{404}{5}+98\right) \bar{x}$	$\begin{gathered} \text { M1 } \\ \text { A1 ft } \end{gathered}$
	$\bar{x}=\frac{\frac{404}{5} \times 6.7+98 \times 4.5}{\left(\frac{404}{5}+98\right)}=5.494 \ldots=5.5 \mathrm{~cm} \text { Accept } 5.49 \text { or better }$	A1
		(5)
(d)	$\tan \theta=\frac{6-\bar{x}}{7}=\frac{0.5058 \ldots}{7}$	M1
	$\alpha=\tan ^{-1}\left(\frac{6}{7}\right)-\tan ^{-1}\left(\frac{0.5058 \ldots}{7}\right)=36.468 \ldots{ }^{\circ}=36^{\circ}$ or better	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
		(3)
(17 marks)		
Notes:		
M1: Using $\pi \int y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed		

Question 6 notes continued

dM1: Integrating their expression for the volume.
A1: Correct integration inc limits now.
A1: Substituting the limits to obtain the GIVEN answer.
(b)

M1: Using $(\pi) \int x y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed, π can be omitted.
A1: Correct integration, including limits; no substitution needed for this mark.
A1: Correct substitution of limits.
M1: Use of $\frac{\pi \int x y^{2} \mathrm{~d} x}{\pi \int y^{2} \mathrm{~d} x}$ with their $\pi \int x y^{2} \mathrm{~d} x . \pi$ must be seen in both numerator and denominator or in neither.
A1: cso. Correct answer. Must be 1.30
(c)

B1: Correct mass ratio.
B1: Correct distances, from V or any other point, provided consistent.
M1: Attempting a moments equation.
A1ft: Correct equation, follow through their distances and mass ratio.
A1: Correct distance from V
(d)

M1: Attempting the tan of an appropriate angle, numbers either way up.
M1: Attempting to obtain the required angle.
A1: Correct final answer 2sf or more.

